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The so-called lattice Boltzmann method is used to implement a numerical model
for erosion, transport, and deposition of sediment due to the action of a streaming
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computer simulations. c© 2002 Elsevier Science (USA)

Key Words: lattice Boltzmann method; sediment transport; erosion and deposition
processes; scour formation phenomena.

1. INTRODUCTION

The lattice Boltzmann or, more generally, lattice gas methods are rather new numerical
techniques aimed at modeling a physical system in terms of the dynamics of fictitious parti-
cles [9, 25]. This method is now considered a serious alternative to standard computational
fluid dynamics [2]. The main idea of this approach is to model the physical reality at a
mesoscopic level: the generic features of microscopic processes can be expressed through
simple rules, from which the desired macroscopic behavior emerges as a collective effect
of the interactions between the many elementary components.

In the past few years, lattice gas models have been extensively used to simulate complex
flows [5, 23, 25] (such as flows in complicated geometries and multiphase flows), as well as
flows of granular material [15]. This approach has also been successfully applied to snow
transport by wind [20, 21].

An interesting advantage of the lattice gas models is their simplicity, first from the
numerical point of view (a 3D fluid code amounts to about 100 lines in Fortran) and,
second, due to the ease of adding new physical processes in the model. Furthermore their
implementation on a parallel computer is straightforward and an object-oriented approach
can be efficiently devised [11].
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Lattice gas models can typically be applied to describe sediment transport and erosion
appearing around submarine pipelines. Such pipelines are commonly used to transport oil,
gas, or even water on the sea bed. At installation time, they rest on an erodible bed. The
current around the pipe causes the formation of an excavation below the pipe, called a
scour. The scour can typically reach a depth approximately equal to the pipe diameter.
At first sight, these scours might damage the pipe due to vibration effects which are due
to the current underneath the pipe. However considering that an important part of the
installation cost is devoted to the pipe protection from environmental changes, current, or
even anchoring, these scours can be seen as an opportunity to self-bury the pipe. A prediction
of their formation and consequently a better understanding of the whole phenomena becomes
necessary.

In this contribution, we show that the lattice gas approach can successfully address the
problem of the scour formation under a submarine pipeline in a steady current.

The scour formation process has been studied in flumes by various authors [6, 16, 19].
Numerical models have been proposed in [3, 17, 22]. They are based on an iterative process
which consists of computing the velocity repartition using a finite-difference scheme and
then in determining the change of the bed.

The numerical approach we propose here to describe scour formation is radically different
from standard CFD techniques since it uses a particle-based approach. Computer simulations
of our lattice gas model are in good agreement with the observations found in the literature
concerning the scour profile, the depth below the pipe, and the velocity distribution along
the system.

The paper is organized as follows. In Section 2, the numerical model is explained. In
Section 3, the main phenomenology of the scour formation process is recalled. Section 4
presents the results of the simulations and Section 5 draws some conclusions.

2. THE MODEL

2.1. Overview

In this section we explain the salient features of our model. We consider a mixed lattice
Boltzmann (LB) and cellular automata (CA) approach (see, for instance, [4, 9, 25] for a
general description of the method).

The fluid-particle system is described in terms of a mesoscopic dynamics: fictitious fluid
and sediment particles move on a regular lattice synchronously at discrete time steps. An
interaction is defined between the particles that meet simultaneously at the same lattice site.
Fluid particles obey collision rules which reproduce, in the macroscopic limit, the Navier–
Stokes equation. The granular material moves under the combined effect of the local fluid
velocity field and gravity.

As they reach the ground, the solid particles pile up and topple if necessary, changing
in this way the boundary conditions for the fluid. The fluid particles bounce back on the
deposited granular material. At the top of the deposition layer, erosion takes place, and if
the fluid flows fast enough, it can pick up solid particles and transport them further away.

As we see, our model contains several adjustable parameters. Some of them are standard
parameters, such as, for instance, the falling speed of the granular material or the repose
angle of the sediments. Other parameters, like our probablity of erosion, are specific to our
model and some extra work may be needed to relate them to the usual quantities introduced
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in the traditional approach. For instance, the grain size does not enter explicitly in our
model. However, our parameters should be considered as some function of the grain size,
and although we do not attempt to express this dependence here, a calibration could be
done. Our main goal is to show that the LB approach is suitable to address time-dependent
erosion processes and we demonstrate it by analyzing the scour formation for a particular
set of parameters that we believe to be repesentative of the generic case.

2.2. The Fluid Model

The fluid is represented by a LB model, that is by density distribution functions fi (r, t)
giving the probability that a fictitious fluid particle with velocity vi enters the lattice site r at
discrete time t . The admissible velocities vi are dependent on the lattice topology. Usually,
i runs between 0 and z, where z is the lattice coordination number (i.e., the number of lattice
links). By convention v0 = 0 and f0 represents the density distribution of particles at rest.
For many lattice topologies the set of vectors vi can be divided into slow and fast velocities:
slow velocities correspond to a jump to a nearest neighbor site while fast velocities imply
a jump to a second nearest neighbor.

The dynamics we consider for fi is given by the so-called BGK model [4, 8, 9, 25],

fi (r + �vi , t + �) = � f (0)
i (r, t) + (1 − �) fi (r, t), (1)

where � is the time step of the simulation, 1/� the relaxation time, and f (0)
i the local

equilibrium, which is a function of the density � = ∑z
i=0mi fi and the fluid velocity u

defined through the relation �u = ∑z
i=0 mi fi vi . The quantities mi are weights associated

with the lattice directions, and m0 = 1 by definition.
It can be shown (see, for instance, [8, 9, 25]) that Eq. (1) reproduces a hydrodynamical

behavior if the local equilibrium functions are chosen as follows (Greek indices label the
spatial coordinates):
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Table I gives the values of the coefficients Ck and the weight mi for a few standard lattice
topologies noted DdQ(z + 1), where d is the spatial dimension. The quantity v gives the
speed unit. It corresponds to the modulus of the slow velocities. Note that the expression
we propose here for the local equilibrium distribution is exactly equivalent to the standard
one (see [25]). However, the formulation in terms of the topological coefficients C0, C2,
and C4 and weights mi is less common in the framework of hydrodynamics. It is however
quite convenient when considering other physical systems [8], such as wave propagation
or diffusion processes, because it clearly decouples the contribution due to the topologies
from the contribution due to the physics.

As mentioned earlier, Eq. (1) with (1) for the local equilibrium distributions is equivalent
to the continuity equation and Navier–Stokes equation with speed of sound cs and viscosity
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TABLE I

The Geometrical Coefficients Necessary to Compute the Local Equilibrium

Distributions in a LB Simulation

Model Slow velocities Fast velocities C0 C2 C4

D1Q3 |vi | = v, mi = 1 2 2 2/3
D2Q9 |vi | = v, mi = 4 |vi | = √

2v, mi = 1 20 12 4
D2Q7 |vi | = v, mi = 1 6 3 3/4
D3Q15 |vi | = v, mi = 1 |vi | = √

3v, mi = 1/8 7 3 1
D3Q19 |vi | = v, mi = 2 |vi | = √

2v, mi = 1 24 12 4

Note. The quantity v is the ratio of the lattice spacing to the time step � and m0 = 1 for all models.

Thus, this approach has two free parameters, cs and �. An obvious constraint on these
parameters is that fi and the viscosity remain positive, which implies that � < 2 and
c2

s < (C2/C0)v
2. A commonly chosen value for cs is c2

s = v2(C4/C2), which improves the
numerical stability.

The LB fluid model has been extensively validated in the literature [2, 5, 25] and is known
to reproduce correctly the time-dependent Navier–Stokes equation. An important class of
applications in hydrodynamics is high Reynolds number flows. A simple way to reach
high Reynolds numbers is to reduce the viscosity by making � close to 2. Unfortunately,
numerical instabilities may develop in this case, due to velocity gradients. To alleviate this
problem, one can have recourse to the so-called Smagorinsky subgrid model. This is standard
approach in computational fluid dynamics and was first proposed for LBGK models by Hou
et al. [13]. One assumes that a turbulent viscosity (�t ) results from the unresolved scales,
that is, the scales below the lattice spacing 	. These scales are thus filtered. The main idea is
to increase locally the relaxation time 1/� by defining a space and time variable relaxation
time 1/�tot.

Then the total viscosity is split as

�tot = � + �t ,

where � is the original viscosity given by Eq. (2) with the original relaxation time 1/�. The
new contribution �t is the so-called turbulent viscosity resulting from the filtered scales. In
the Smagorinsky model [24], it is expressed as

�t = (Csmago	)2|S|, (3)

where 	 is the filter size, whose magnitude usually corresponds to the grid spacing, and
|S| = √

2S�� S�� is the magnitude of the strain-rate tensor S�� = 1/2(∂�u� + ∂�u�). Thus,
the larger the |S|, the larger the turbulent viscosity, so that the total viscosity is more
important in regions close to obstacles.

In the LB scheme, the quantity S�� can be computed locally, without taking extra deriva-
tives, by only considering the nonequilibrium momentum tensor as [8]
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Thus, from (3) and (4), the turbulent viscosity can be expressed as
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where Q2 = �
(1)
���

(1)
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and substituting Eq. (5) into Eq. (6), one can solve the resulting second-order equation and
then express the local relaxation time as
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The quantity Csmago (typically smaller than 0.5) tunes the effect of the subgrid model and
should be adjusted empirically depending on the desired flow pattern.

The problem of ajusting correctly Csmago remains open. In order to model the boundary
layer near a wall, one may expect that the value of Csmago is zero at the boundary of an
obstacle and then increases to reach its bulk value as one gets away from the wall. No
obvious theory describes how this variation should be and the simulation we performed did
not show a real change in the main features of the flow when Csmago is varied. Therefore, we
assume that the simplified procedure of having a constant nonzero is enough in the present
case.

As an illustration, we present in Fig. 1 the velocity pattern we obtain within this framework
in the case of the flow around a pipeline sitting on a flat surface.

The flow we consider is turbulent (Re = 7000), and for this reason, we plot the stationary
average streamlines and average horizontal velocity profile. This simulation compares well

FIG. 1. Average flow pattern around a pipe in a turbulent regime, as obtained with the LB method. The Reynolds
number is Re = 7000, obtained with 1/� = 0.5023, (Csmago	)2 = 0.4	2. The entry speed is uentry = 0.1	/� and
the cylinder diameter D = 20	. The upper panel shows the streamlines and the lower one the horizontal velocity
profile at several locations. Distances are given in pipe diameters and velocities in lattice units.
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with the experiment by Jensen [14]. In addition, this flow is generic (with respect to the
size of the main eddies and reattachement points) of the situations considered in laboratory
experiments when studying the scour formation process [3, 16].

2.3. The Sediment Model

After the fluid motion, the second important ingredient of our model is the sediment. Here,
particles are represented by an integer n(r, t) ≥ 0, indicating how many pseudoparticles
are present at site r and time t . Sediments move on the same lattice as the fluid particles
and interact with them. Since n(r, t) can take any positive value, we term our model a
multiparticle CA.

It is important to remember that in our mesoscopic approach, we do not try to represent
a specific granular material. Rather, we want to capture the generic features of the erosion–
deposition process. The existence of universal behaviors in systems with many interacting
particles is common in many areas of science and there are numerous examples where the
macroscopic behavior depends very little on the microscopic details of the system. For this
reason, we may expect (and this is confirmed by our results) that, at first approximation,
our dynamics of fictitious particle produces the same deposition patterns as real systems,
even if all parameters are not of the correct order of magnitude.

2.3.1. Transport Rule

In this section, we describe the rule of motion for the sediment particles. After each time
step, the particles jump to a nearest-neighbor site, under the action of the local fluid flow
and gravity force. Gravity is taken into account by imposing a falling speed ufall to the
particles. In the simplest version of our model, the suspensions are passive particles and
their presence does not modify the flow field, except when they form a solid deposit (i.e., a
new boundary condition). However, it would be quite easy to modify the fluid properties so
as to make the inverse relaxation time � vary according to the local density of transported
particles to account for the fact that the fluid viscosity depends on the concentration of the
suspensions.

If the local fluid velocity at site r is u(r, t), the particles located at that site will move to
site r + �s(u + ufall), where �s is the time unit associated with the motion of the granular
particles. Unfortunately, this new location is usually not a lattice site. The solution to this
problem is then to consider a stochastic motion: each of the n(r, t) particles jumps to a
neighboring site r + �vi with a probability pi proportional to the projection of �s(u + ufall)

on the lattice direction �vi . The quantity �s is adjusted so as to maximize the probability
of motion, while ensuring that the jumps are always smaller than a lattice constant. An
example of the transport rule is presented in Fig. 2 for the hexagonal D2Q7 model (the
other topologies are widely treated in [21]). In this case (see Fig. 2), three probabilities p0,
pi1 , and pi2 must be computed using the two relations

sin �

�s |u + ufall| = sin �

pi2

= sin 


pi1

, p0 + pi1 + pi2 = 1,

where � equals 60 degrees.
This stochastic cellular automata rule produces a particle motion with the correct average

trajectory and a variance which can be interpreted as a local diffusive behavior [21]. Indeed,
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FIG. 2. Illustration of the motion rule in case of the D2Q7 model. Shown are three lattice sites, r, r + �vi1 ,
and r + �vi2 , which correspond to the possible destinations of the particle subject to a fluid drag u and a fall
velocity ufall. The corresponding probabilities pi1 and pi2 are obtained by the projection shown in the figure.

it can be shown [21] that the diffusion coefficient can be expressed as D = D∗(	2/�), where
	 and � are the space and time spacings, respectively. The quantity D∗ is a dimensionless
coefficient related to the lattice topology, which in our case is D∗ ≈ 1/2. Therefore, when
reducing the lattice spacing with the usual constraint 	 = � , the full diffusion constant
decreases as O(	) and vanishes for fine-enough grids. However, we noticed from various
numerical simulations that the deposition patterns we obtain are quite robust to a change of
the grid size. The noise produced by our transport rule seems necessary to initiate erosion
(e.g., ripple formations) but the amplitude of this noise is much less relevant.

Note that in this model there is no need to describe transport mechanisms other than the
one defined above: creeping, saltation, and suspension all naturally emerge from our rule
at the macroscopic scale [21].

2.3.2. Deposition Rule

The next aspect of the particle dynamics is the deposition rule. Under the combined effect
of the fluid and gravity, particles can land on a solid site (e.g., the bottom of the system or
the top of the deposition layer). Motion is no longer possible and particles start piling up.
In our model, up to Nthres particles can accumulate on a given site (Nthres gives a way to
specify the spatial scale of the granular particles with respect to the fluid system). When this
limit is reached, the site solidifies and new incoming particles pile up on the site directly
above. The solid sites formed in this way represent obstacles on which the fluid particles
bounce back from where they came. Thus, this solidification process implies a dynamically
changing boundary condition for the fluid.

Note that, on the other hand, the fluid is not affected by the presence of the rest particles
piling up on top of a solid site. Also, these rest particles are no longer subject to the suspension
transport rule. Only the erosion mechanism discussed below can move them away.
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FIG. 3. Evolution of stable piles subject to a flow streaming from left to right, as produced by our transport,
deposition, and erosion rules. Two different angles of repose �rep are considered. The variable t indicates the number
of iterations. At t = 0, the flow is applied and a stationary regime is reached after a few thousand iterations. Note
that the effect of the flow is to modify the leeward slopes and also to make piles move to the right.

As sediment particles do not have infinite cohesion, it is realistic to consider the following
toppling rule: when a lattice site contains an excess of �N deposited particles with respect
to its left or right neighbors (in 2D), toppling occurs. During this process, all unstable sites
send a given portion of their grains in excess to the less-occupied neighbors. With this rule,
the stable configuration may not be reached in one iteration, and for this reason, the model
allows the toppling and transport processes to take place at different time scales.

The quantities �N and Nthres give a simple way to adjust the angle of repose of the
pile. In the stable state, the model tolerates a maximum difference of �N particles between
two adjacent sites. Two solidified sites are at least horizontally separated by k sites, where
k = [Nthres/�N ]. Hence, the angle of repose �rep satisfies

tan �rep = 1/k.

Figure 3 illustrates the effect of changing �rep on two toppling simulations. At the initial
stage (t = 0) one considers two piles prepared with their angle of repose (in this example,
25◦ and 35◦, respectively). Then a flow from left to right is turned on and the piles have to
adjust by taking into account the erosion (whose mechanism is explained below) produced
by the flow. One observes that the downstream slopes keep the same angle while the upstream
slopes become less steep.

2.3.3. Erosion

Finally, we describe the rule implementing the erosion process. The mechanism we
propose is quite simple and corresponds to making again the deposited grains available
for transport: with probability perosion each particle belonging to the first Nthres particles of
the deposition layer (either a solid site or the rest particles that have accumulated directly
above) is moved one lattice spacing up, into a site where the transport rule apply.

If the local fluid velocity on that site is big enough, the particle will be picked up and
moved further away. Otherwise, if the flow is slow, the resulting motion will be to land
again on the same site where the particle started off.

This rule captures the important effect that a strong flow will result in an important erosion
process. It also implements naturally the idea that erosion starts only if the local speed is
larger than some threshold. One could also make the probability parameter perosion depend on
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the amount of particles already in suspension, as it is often suggested in phenomenological
models. However, in our simulations this does not turn out to be necessary and perosion is a
constant that is modified only from one simulation to the other, when representing different
qualities of sediment.

2.4. Note on the Model Parameters

Several parameters can be tuned to modify the behavior of our model. For the fluid, one
can typically vary the entry speed (uentry) and change the viscosity (by changing �).

The interaction between the fluid and the suspensions is determined by the falling speed
ufall. This parameter accounts for the ratio of the fluid and solid densities and the grain
diameter in a way that we do not make explicit her. Similarly, the erosion probablity perosion

is a quantity containing the effect of several parameters, such as the lift force, grain mobility,
and interparticle cohesion.

The properties of the sediments are described by the angle of repose �rep and the quantity
Nthres, which, as explained previously, is the amount of grain that is needed to fill a region
whose height and width is one lattice spacing (in 2D).

Thus, as opposed to the conventional description, the grain diameter is not an independent
parameter of our model. However, its effect on ufall, perosion, Nthres could be worked out.
Such a calibration is not the purpose of this paper and we leave the detailed analysis of the
dependence of our model upon its parameter for a future investigation. The rest of this study
focuses on the capability of our approach to simulate the scour formation under a submarine
pipe and, to this end, we restrict ourselves to a set of parameters which reproduces the generic
features of the process. These values could be used as guidelines for other simulations.

3. SCOUR FORMATION PROCESS

This section reviews some phenomenological features of the scour formation process
under a pipe [12, 27]. Figure 4 presents the situation of interest. The scour which forms

FIG. 4. Three main stages of the scour onset process under a unidirectional current. (1) Due to the current,
three main vortices appear in the pipe neighborhood. (2) The two small vortices up- and downstream of the pipe
start to dig a hole. (3) After a while, the holes meet each other below the pipe and the scour formation process
breaks out. xD and xR denote reattachment points.
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under the pipe occurs in two main phases, namely the onset and the erosion. The onset of
the scour is directly related to the two vortices in front of and behind the pipe. Each one digs
up a hole. The scour formation process breaks out when these holes meet together under
the pipe. The onset process is illustrated in Fig. 4.

When the water has started to flow underneath the pipe, the scour formation stage takes
place. First, the gap under the pipe is small while the downstream hill is relatively high.
At this point, the pressure upstream of the pipe is rather high and consequently the fluid is
accelerated. Many sediment particles are ejected and the scour development is fast. Then,
as the scour depth increases, the velocity under the pipe decreases. It follows that the scour
development slows down and progressively reaches an equilibrium.

Various laboratory experiments (see, for example, [16]) show that the depth of the scour
depends essentially on the pipe diameter D, the flow velocity V , the kinematic viscosity of
the fluid, and the sediment properties. These studies also highlight that the ratio between
the scour depth and the pipe diameter should be comprised between 0.2 and 1.0.

Also, it turns out that the scour formation process is not too much influenced, in an
appropriate range, by turbulence. Indeed for Reynolds numbers between 1 × 104 and 2 ×
105, Kjeldsen et al. [16], as well as Bijker and Leeuwenstein [1], propose formulae indicating
that the scour depth is strongly controlled by the pipe diameter. Following the same idea,
Sumer and Fredsøe [26] propose an empirical formula S/D = 0.6 ± 0.1 indicating the
dominant role of the pipe diameter.

4. RESULTS

In this section, we present the predictions of our model for the scour formation process
in a steady current. We consider a virtual river made up of a layer of fluid on top of an
initially flat bed of sediments with uniform properties. A pipeline is laid on the top of the
bed, as illustrated in Fig. 5.

Due to the geometry of the problem, a two-dimensional simulation is considered. The
x-axis corresponds to the direction perpendicular to the pipe and the z-axis to the vertical
direction. The system size is Lx = 1100 and Lz = 70, in lattice units. The bottom line
(z = 0) is an impermeable wall on which sand grains are deposited and fluid particles
bounce back if they ever reach this region. For the other boundaries of the system, the
conditions change depending on whether one considers a fluid or a sand particle.

For the fluid, the system is periodic along the x-axis. All fluid particles that reach
the x = Lx line are re-injected on the left side and vice versa. On the line x = 0, the
fluid is accelerated uniformly so as to produce a water current flowing from left to right,
with entry speed uentry = 0.1 (in lattice units). The viscosity is tuned so as to obtain a
Reynolds number Re ≈ 2 × 104, which is a typical value in scouring experiments [3, 16].
On the upper line (z = Lz) a zero vertical velocity is imposed. Note that these boundary

FIG. 5. Geometry of the numerical experiment. Distances are expressed in lattice sites.
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TABLE II

Values of the Model Parameters for the Sediments

ufall Nthres perosion �rep

0.006 10 0.01 20◦–40◦

conditions are implemented so that the total amount of fluid in the simulation remains
constant.

For the sediments, the parameters we have chosen for the simulation are summarized
in Table II. The falling speed is given in lattice units and the other parameters are pure
numbers. The values of these parameters are chosen empirically, so as to reproduce the
experiments presented by Mao [18]. However, other values can be considered and other
erosion patterns could emerge.

As shown in Fig. 5, the setting of our numerical simulation corresponds precisely to the
experiment done by Mao [18]. The simulation starts with an erodible bed and all grains that
reach the right (and possibly the top) of the system are lost.

Since the toppling and transport processes are not taking place at the same time scale, we
empirically choose to make 20 steps of pure toppling every 20 iterations of the dynamics.

The evolution of the bed profile predicted by our model is shown in Fig. 6, at four typical
stages of the scour formation. The profile at t = 200,000 corresponds to a steady state. It
compares well with the experimental profiles found by Mao [18] (white and black circles in
the figure). Also, we observe the asymmetry of the scour, which, as expected, is steeper on
the left part than on the right part. This gives a good validation of the stationary properties
of our model.

Note that the precise value of the repose angle �rep is not critical as long as it is larger
than the slopes of the eroded bed (i.e., 14◦ and 19◦). It is admitted that �rep = 20◦ is too
small to described the sediment properties in Mao’s experiment, but we have observed
that a larger value of �rep gives the same erosion pattern, too. This is not surprising
since the erosion slopes result from the effect of the current and not from the repose
angle.

FIG. 6. Characteristic stages of the scour evolution process where S denotes the scour depth, D the pipe
diameter, and x the horizontal distance from the center of the pipe. Each iteration is one unit of time. The erosion
profile we obtain is in good agreement with the experimental findings shown as the black and white circles.
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FIG. 7. Time evolution of the scour depth. Simulated depths are displayed as circles, while the solid line is
the best fit to Eq. (8). The offset at St = 0 indicates that the origin of time does not correspond to the beginning of
the erosion process.

Our model also gives a dynamical description of the scour formation (Fig. 6 shows the
erosion profile at several time steps). In particular, we can observe the protuberance which
forms past the pipe and travels downstream, as in real experiments.

In order to have a quantitative validation of the time development, we compare the scour
depth we obtain as a function of time with our simulation with the phenomenological
relation proposed by Sumer and Fredsøe [26],

St = S
(
1 − e−t/T

)
, (8)

describing how the final profile is reached.
In relation (8), St denotes the scour depth at time t and S the final equilibrium value. T

is the characteristic time scale of the scour process and represents the time period during
which a substantial scour develops.

In our simulation we have recorded the scour depth for several time steps. Results are
shown in Fig. 7 as white circles. An exponential fit (solid line) shows a very good agree-
ment with the behavior described by (8), thus indicating that the dynamic properties are
correctly captured by our approach. Here we obtain a characteristic time T ≈ 29,700 iter-
ations. This quantity depends on the values chosen for the parameters such as ufall, Nthres,
perosion. If one modifies them in such a way as to model a larger grain diameter d, one also
measures an increase in T . This behavior is in agreement with phenomenological observ-
ations [27].

Finally, let us consider the case of a pipe with a spoiler. As mentioned in the introduction,
a submarine pipeline is more protected against possible damage when it is buried in the sea
bed. The hole resulting from the scour process can be used to self-bury the pipe. Following
this idea, spoilers of various angles can be attached to the pipe in order to speed up and
increase the scour formation process [7]. Simulations with our method show good results
when spoilers are attached to a regular pipe, as shown in Fig. 8, where the effect of the
scour depth versus the spoiler angle is compared with experimental observation (see [10]
for a more detailed description).
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FIG. 8. (a) Submarine pipeline with a spoiler. The spoiler angle is denoted by �s , the pipe diameter is D,
and the spoiler length is �. (b) Increase in the scour depth versus the spoiler angle �s . Results from our numerical
model are drawn as circles and experiments of Chiew [7] as squares.

5. CONCLUSION

We have presented a lattice gas model incorporating two ingredients, namely water and
sediment, in order to simulate the scour formation process around a pipeline subject to a
steady current. The shape of the bed at various stages of the simulation reproduces rather
accurately the description given in the literature. The fluid properties are also in agreement
with experimental or other numerical studies.

Our main result is that erosion phenomena in water currents can be described as a whole
with a lattice gas approach. Intuitive mechanisms are implemented to model the various
processes at a mesoscopic scale and the method provides a natural flexibility to describe
fluid and sediments within the same numerical framework. Another important feature of
our approach is the simplicity of the numerical scheme and the ease of parallelizing it. For
instance, a typical simulation, involving 200,000 iterations and 80,000 lattice sites, takes
about 100 min on a 32-node cluster (Pentium III, 500 MHz).

Notice that here we only focused on the simulation of a steady current. However, it is
quite obvious that one should take wave current into account by changing the way the fluid
is accelerated in the simulation, without altering the model itself. Also, some extensions to
the model are possible, such as considering two classes of sediments, each with its own set
of parameters, so as to model grains of different diameters.
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